第六十五章 证明‘5+5’(1 / 2)

我的科学时代 仲渊2 2706 字 3个月前

有趣的事情在于通往世界数学界和学术界顶级俱乐部的门票,就这么送上门来了。

毫无疑问,作为近二百年来的三大重量级世界性数学难题之一,哥德巴赫猜想在现代数学发展史上有着极高的身份地位和重要性,这是最具传奇色彩的数学猜想之一。

如果从严谨角度讲,从1742年哥德巴赫猜想提出到2021年,时间跨度279年,近三百年时光,仍旧没有真正意义上证明11,证明推演进展永远停留在了12,证明推演时间永远停留在了1966年,证明推演者为陈景润。

整个人类文明几乎都被哥德巴赫猜想给难倒了。

谈到哥德巴赫猜想,就离不开两个人,一个是十八世纪的数学界头号砸场子选手兼猜想提出者,哥德巴赫同学,一个是站在科学史和数学史巅峰的男人,享有数学之王称号,历史上有史以来最多产的莱昂哈德欧拉同学。

哥德巴赫其实是一个非常意思的人,首先,家里有矿,生活富裕,最大的爱好就是追星,当然,追的是欧拉、伯努利、莱布尼茨和雅各布等等同时代科学家,作为一个富家子弟,哥德巴赫没有混迹上流社会的爱好,反而喜欢数学,是一名业余数学爱好者。

是的,哥德巴赫本身只是一个业余数学爱好者,而非职业数学家,有一天清晨,哥德巴赫研究数学的时候,忽然来了灵感,从抽象的数学之中发现了一个细微且不可捉摸的本质,那就是1,任何大于等于6的偶数,都可以表示成两个奇质数之和,2,任何大于等于9的奇数,都可以表示三个奇质数之和。

这是哥德巴赫猜想的最初版本,哥德巴赫发现这点之后,立马兴奋了起来,经过一番实验确认了这两个命题,但他无法证明,因为奇质数是无限的,最终只能写信给自己的好友和大明星欧拉,请求帮忙。

欧拉收到信件仔细研究,发现哥德巴赫提出的两个命题确实正确,但他也搞不定,不过欧拉将哥德巴赫两个命题合二为一,给出了全新的版本,即任何一个大于2的偶数,都是两个质数之和。

在座专门研究过哥德巴赫猜想的人都知道,现在的哥德巴赫猜想,一般采用的都是欧拉版本,而对普通人来说,哥德巴赫猜想最抽象和最难理解的地方就是11。

很多人看到这个11之后,下意识就会得出112,这群数学家真是吃饱了撑的,没事干,这么简单的数学题还不会做。

还有些学了一些皮毛的人,向周围的人宣扬,学生是学112,学者研究为什么112。

实际上,这些全是错的,11是哥德巴赫猜想的简称,并不是要证明112,而是要证明任何一个大于2的偶数总能写1个质数1个质数的和。

这才是11。

数学的魅力上面写了,当年哥德巴赫猜想一提出,原本风平浪静的数学界,瞬间被哥德巴赫这锤子给砸懵了,无数人满脸懵逼,自此掀起了证明哥德巴赫猜想的浪潮。

证明哥德巴赫猜想现阶段总共有2个途径,一个就是大众最为熟悉的殆素数,另外一个是例外集合,至于后世的三素数定理和几乎哥德巴赫问题,还没出现。

殆素数最为直观,证明哥德巴赫猜想的进展极为迅速,1920年挪威数学家布朗通过一种古老而经典的筛法,证明了每一个充分大的偶数都可以表示成两个数的和,而这两个数又分别可以表示为不超过9个质因数的乘积。

这个命题简称为99。

筛法掀起了世界数学界新一轮的高潮,数学家们立即更改主攻方向,这些人其中就包括去英国剑桥大

学留学的华罗庚。

1924年,德国数学家拉特马赫证明了77。

1932年,英国数学家埃斯特曼证明了66。

到了如今的1937年,哥德巴赫猜想证明进展到达新一轮的高峰,由意大利女数学家蕾西证明57。

当然,一个问题来了,哥德巴赫猜想的重要性和身份地位无可厚非,那么,证明哥德巴赫猜想的意义在哪里呢

直白点,有什么用

对现阶段的人类文明而言,好像确实没有什么高价值的实际用处,如果硬要说有的话,那就是荣誉,一个站在智慧巅峰的荣誉。

证明哥德巴赫猜想既不能让土地增产,又不能让飞机飞得更快。

当然,数学界之所以想证明哥德巴赫猜想,无数数学家孜孜不倦想要证明它的动机,并不是什么菲尔兹奖和学术地位,而是因为它就在那里,它就是诗和远方。

古希腊几何学家,阿波洛尼乌斯,创造圆锥曲线理论,在一千八百年后由德国天文学家开普勒将其应用于行星轨道理论。

数学家伽罗华公元1831年创立群论,一百余年后获得物理应用。

公元1860年创立的矩阵理论,在六十年后应用量子力学。

高斯,黎曼,罗马切夫斯基等人提出并发展了非欧几何。

数学王子高斯一生都在探索非欧几何的实际应用,但他一生